PAL ▪ SaleArticle with links
For the standard-definition video mode referred to as PAL or PAL/SECAM, see 576i. For other uses, see PAL (disambiguation).
Television encoding systems by nation; countries now using (and once using) the PAL system are shown in blue.

PAL, short for Phase Alternating Line, is a colour encoding system for analogue television used in broadcast television systems in most countries broadcasting at 625-line / 50 field (25 frame) per second (576i). Other common colour encoding systems are NTSC and SECAM. This page primarily discusses the PAL colour encoding system. The articles on broadcast television systems and analogue television further describe frame rates, image resolution and audio modulation. For discussion of the 625-line / 50 field (25 frame) per second television standard, see 576i.


In the 1950s, the Western European countries commenced planning to introduce colour television, and were faced with the problem that the NTSC standard demonstrated several weaknesses, including colour tone shifting under poor transmission conditions. To overcome NTSC's shortcomings, alternative standards were devised, resulting in the development of the PAL and SECAM standards. The goal was to provide a colour TV standard for the European picture frequency of 50 fields per second (50 hertz), and finding a way to eliminate the problems with NTSC.

PAL was developed by Walter Bruch at Telefunken in Hannover, Germany, with important input from Dr. Kruse and Gerhard Mahler (de). The format was patented by Telefunken in 1962, citing Bruch as inventor, and unveiled to European Broadcasting Union (EBU) members on 3 January 1963, with the first broadcasts beginning in the United Kingdom and West Germany in 1967-the one BBC channel initially using the broadcast standard was BBC2 which had been the first UK TV service to introduce "625-lines" in 1964. Telefunken PALcolor 708T was the first PAL commercial TV set. It was followed by Loewe S 920 & F 900.

Telefunken was later bought by the French electronics manufacturer Thomson. Thomson also bought the Compagnie Générale de Télévision where Henri de France developed SECAM, the first European Standard for colour television. Thomson, now called Technicolor SA, also owns the RCA brand and licenses it to other companies; Radio Corporation of America, the originator of that brand, created the NTSC colour TV standard before Thomson became involved.

The term PAL is often used informally and somewhat imprecisely to refer to the 625-line/50 Hz (576i) television system in general, to differentiate from the 525-line/60 Hz (480i) system generally used with NTSC. Accordingly, DVDs are labelled as PAL or NTSC (referring to the line count and frame rate) even though technically the discs do not carry either PAL or NTSC composite signal. CCIR 625/50 and EIA 525/60 are the proper names for these (line count and frame rate) standards; PAL and NTSC are only the method of transmitting color to the TV.

Colour encoding

Both the PAL and the NTSC system use a quadrature amplitude modulated subcarrier carrying the chrominance information added to the luminance video signal to form a composite video baseband signal. The frequency of this subcarrier is 4.43361875 MHz for PAL, compared to 3.579545 MHz for NTSC. The SECAM system, on the other hand, uses a frequency modulation scheme on its two line alternate colour subcarriers 4.25000 and 4.40625 MHz.

The name "Phase Alternating Line" describes the way that the phase of part of the colour information on the video signal is reversed with each line, which automatically corrects phase errors in the transmission of the signal by cancelling them out, at the expense of vertical frame colour resolution. Lines where the colour phase is reversed compared to NTSC are often called PAL or phase-alternation lines, which justifies one of the expansions of the acronym, while the other lines are called NTSC lines. Early PAL receivers relied on the human eye to do that cancelling; however, this resulted in a comb-like effect known as Hanover bars on larger phase errors. Thus, most receivers now use a chrominance analog delay line, which stores the received colour information on each line of display; an average of the colour information from the previous line and the current line is then used to drive the picture tube. The effect is that phase errors result in saturation changes, which are less objectionable than the equivalent hue changes of NTSC. A minor drawback is that the vertical colour resolution is poorer than the NTSC system's, but since the human eye also has a colour resolution that is much lower than its brightness resolution, this effect is not visible. In any case, NTSC, PAL, and SECAM all have chrominance bandwidth (horizontal colour detail) reduced greatly compared to the luminance signal.

Spectrum of a System I television channel with PAL.
Oscillogram of composite PAL signal-one frame.
Oscillogram of composite PAL signal-several lines.
Oscillogram of composite PAL signal-two lines.

The 4.43361875 MHz frequency of the colour carrier is a result of 283.75 colour clock cycles per line plus a 25 Hz offset to avoid interferences. Since the line frequency (number of lines per second) is 15625 Hz (625 lines × 50 Hz ÷ 2), the colour carrier frequency calculates as follows: 4.43361875 MHz = 283.75 × 15625 Hz + 25 Hz.

The original colour carrier is required by the colour decoder to recreate the colour difference signals. Since the carrier is not transmitted with the video information it has to be generated locally in the receiver. In order that the phase of this locally generated signal can match the transmitted information, a 10 cycle burst of colour subcarrier is added to the video signal shortly after the line sync pulse, but before the picture information, during the so-called back porch. This colour burst is not actually in phase with the original colour subcarrier, but leads it by 45 degrees on the odd lines and lags it by 45 degrees on the even lines. This swinging burst enables the colour decoder circuitry to distinguish the phase of the R-Y vector which reverses every line.


PAL usually has 576 visible lines compared with 480 lines with NTSC, meaning that PAL has a 20% higher resolution. Both PAL and NTSC have a higher frame rate than film, 24 frames per second, offering flicker-free motion. Most TV output for PAL and NTSC use interlaced frames meaning that even lines update on one frame and odd lines update on the next frame. Interlacing frames gives a smoother motion with half the frame rate, the downside is with scene changes. NTSC is used with a fps of 60i or 30p whereas PAL generally uses 50i or 25p; both use a high enough frame rate to give the illusion of fluid motion. This is due to the fact that NTSC is generally used in countries with a utility frequency of 60 Hz and PAL in countries with 50 Hz, although there are many exceptions. PAL has a closer frame rate to that of film and is less likely to suffer from issues caused during frame rate conversion. Artefacts caused by frame rate conversion required when video has been recorded at the wrong rate for the display can be severe.

NTSC receivers have a tint control to perform colour correction manually. If this is not adjusted correctly, the colours may be faulty. The PAL standard automatically cancels hue errors by phase reversal, so a tint control is unnecessary. Chrominance phase errors in the PAL system are cancelled out using a 1H delay line resulting in lower saturation, which is much less noticeable to the eye than NTSC hue errors.

However, the alternation of colour information-Hanover bars-can lead to picture grain on pictures with extreme phase errors even in PAL systems, if decoder circuits are misaligned or use the simplified decoders of early designs (typically to overcome royalty restrictions). In most cases such extreme phase shifts do not occur. This effect will usually be observed when the transmission path is poor, typically in built up areas or where the terrain is unfavourable. The effect is more noticeable on UHF than VHF signals as VHF signals tend to be more robust.

In the early 1970s some Japanese set manufacturers developed decoding systems to avoid paying royalties to Telefunken. The Telefunken license covered any decoding method that relied on the alternating subcarrier phase to reduce phase errors. This included very basic PAL decoders that relied on the human eye to average out the odd/even line phase errors. One solution was to use a 1H analog delay line to allow decoding of only the odd or even lines. For example, the chrominance on odd lines would be switched directly through to the decoder and also be stored in the delay line. Then, on even lines, the stored odd line would be decoded again. This method effectively converted PAL to NTSC. Such systems suffered hue errors and other problems inherent in NTSC and required the addition of a manual hue control.

PAL and NTSC have slightly divergent colour spaces, but the colour decoder differences here are ignored.


SECAM is an earlier attempt at compatible colour television which also tries to resolve the NTSC hue problem. It does so by applying a different method to colour transmission, namely alternate transmission of the U and V vectors and frequency modulation, while PAL attempts to improve on the NTSC method.

SECAM transmissions are more robust over longer distances than NTSC or PAL. However, owing to their FM nature, the colour signal remains present, although at reduced amplitude, even in monochrome portions of the image, thus being subject to stronger cross colour. Like PAL, a SECAM receiver needs a delay line, but unlike PAL, it is not possible to build a SECAM receiver without one.

PAL signal details

For PAL-B/G the signal has these characteristics.

Parameter Value
Pixel Clock frequency
(digital sources with 704
or 720 active Pixel/Line)
13.5 MHz
Bandwidth 5 MHz
Horizontal sync polarity Negative
Total time for each line 64.000 µs
Front porch (A) 1.65+0.4
Sync pulse length (B) 4.7±0.20 µs
Back porch (C) 5.7±0.20 µs
Active video (D) 51.95+0.4

(Total horizontal sync time 12.05 µs)

After 0.9 µs a 2.25±0.23 µs colorburst of 10±1 cycles is sent. Most rise/fall times are in 250±50 ns range. Amplitude is 100% for white level, 30% for black, and 0% for sync. The CVBS electrical amplitude is Vpp 1.0 V and impedance of 75 Ω.

The composite video (CVBS) signal used in systems M and N before combination with a sound carrier and modulation onto an RF carrier.

The vertical timings are:

Parameter Value
Vertical lines 313 (625 total)
Vertical lines visible 288 (576 total)
Vertical sync polarity Negative (burst)
Vertical frequency 50 Hz
Sync pulse length (F) 0.576 ms (burst)
Active video (H) 18.4 ms

(Total vertical sync time 1.6 ms)

As PAL is interlaced, every two fields are summed to make a complete picture frame.

Luminance, Y, is derived from red, green, and blue (R'G'B') signals:

U and V are used to transmit chrominance. Each has a typical bandwidth of 1.3 MHz.

Composite PAL signal = Y + U \sin (\omega t) + V \cos (\omega t) +timing where \omega = 2\pi F_{SC}.

Subcarrier frequency F_{SC} is 4.43361875 MHz (±5 Hz) for PAL-B/D/G/H/I/N.

PAL broadcast systems

This table illustrates the differences:

Fields 50 50 50 50 60 50
Lines 625 625 625 625 525 625
Active lines 576 576 582** 576 480 576
Channel bandwidth 7 MHz 8 MHz 8 MHz 8 MHz 6 MHz 6 MHz
Video bandwidth 5.0 MHz 5.0 MHz 5.5 MHz 6.0 MHz 4.2 MHz 4.2 MHz
Colour subcarrier 4.43361875 MHz 4.43361875 MHz 4.43361875 MHz 4.43361875 MHz 3.575611 MHz 3.58205625 MHz
Sound carrier 5.5 MHz 5.5 MHz 6.0 MHz 6.5 MHz 4.5 MHz 4.5 MHz

* System I has never been used on VHF in the UK.
** The UK's adoption of 582 active lines has no significant impact on either non-system I receivers or non-system I source material as the extra lines are not within the normal display area and do not contain anything in the other standards anyway. All Digital TV broadcasts and digital recordings (e.g. DVDs) conform to the 576 active line standard.


The majority of countries using PAL have television standards with 625 lines and 50 fields per second, differences concern the audio carrier frequency and channel bandwidths. The variants are:

Systems B and G are similar. System B is used for 7 MHz-wide channels on VHF, while System G is used for 8 MHz-wide channels on UHF (Australia uses System B on UHF). Similarly, Systems D and K are similar except for the bands they use: System D is only used on VHF, while System K is only used on UHF. Although System I is used on both bands, it has only been used on UHF in the United Kingdom due to the black-and-white 405-line "System A" TV services on VHF operating until the 1980s....

PAL-M (Brazil)

Main article: PAL-M

In Brazil, PAL is used in conjunction with the 525 line, 59.94 field/s system M, using (very nearly) the NTSC colour subcarrier frequency. Exact colour subcarrier frequency of PAL-M is 3.575611 MHz. Almost all other countries using system M use NTSC.

The PAL colour system (either baseband or with any RF system, with the normal 4.43 MHz subcarrier unlike PAL-M) can also be applied to an NTSC-like 525-line (480i) picture to form what is often known as "PAL-60" (sometimes "PAL-60/525", "Quasi-PAL" or "Pseudo PAL"). PAL-M (a broadcast standard) however should not be confused with "PAL-60" (a video playback system-see below).

PAL-N (Argentina, Paraguay and Uruguay)

In Argentina, Paraguay and Uruguay the PAL-N variant is used. It employs the 625 line/50 field per second waveform of PAL-B/G, D/K, H, and I, but on a 6 MHz channel with a chrominance subcarrier frequency of 3.582 MHz very similar to NTSC.

VHS tapes recorded from a PAL-N or a PAL-B/G, D/K, H, or I broadcast are indistinguishable because the downconverted subcarrier on the tape is the same. A VHS recorded off TV (or released) in Europe will play in colour on any PAL-N VCR and PAL-N TV in Argentina, Paraguay and Uruguay. Likewise, any tape recorded in Argentina, Paraguay or Uruguay off a PAL-N TV broadcast can be sent to anyone in European countries that use PAL (and Australia/New Zealand, etc.) and it will display in colour. This will also play back successfully in Russia and other SECAM countries, as the USSR mandated PAL compatibility in 1985-this has proved to be very convenient for video collectors.

People in Argentina, Paraguay and Uruguay usually own TV sets that also display NTSC-M, in addition to PAL-N. Direct TV also conveniently broadcasts in NTSC-M for North, Central, and South America. Most DVD players sold in Argentina, Paraguay and Uruguay also play PAL discs-however, this is usually output in the European variant (colour subcarrier frequency 4.433618 MHz), so people who own a TV set which only works in PAL-N (plus NTSC-M in most cases) will have to watch those PAL DVD imports in black and white as the colour subcarrier frequency in the TV set is the PAL-N variation, 3.582056 MHz.

In the case that a VHS or DVD player works in PAL (and not in PAL-N) and the TV set works in PAL-N (and not in PAL), there are two options:

Some DVD players (usually lesser known brands) include an internal transcoder and the signal can be output in NTSC-M, with some video quality loss due to the system's conversion from a 625/50 PAL DVD to the NTSC-M 525/60 output format. A few DVD players sold in Argentina, Paraguay and Uruguay also allow a signal output of NTSC-M, PAL, or PAL-N. In that case, a PAL disc (imported from Europe) can be played back on a PAL-N TV because there are no field/line conversions, quality is generally excellent.

Extended features of the PAL specification, such as Teletext, are implemented quite differently in PAL-N. PAL-N supports a modified 608 closed captioning format that is designed to ease compatibility with NTSC originated content carried on line 18, and a modified teletext format that can occupy several lines.

Some special VHS video recorders are available which can allow viewers the flexibility of enjoying PAL-N recordings using a standard PAL ( 625/50Hz ) colour tv, or even through multi-system tv sets.Video recorders like Panasonic NV-W1E ( AG-W1 for the USA ),AG-W2,AG-W3,NV-J700AM,Aiwa HV-M110S,HV-M1U,Samsung SV-4000W and SV-7000W feature a digital tv system conversion circuitry.


The PAL L (Phase Alternating Line with L-sound system) standard uses the same video system as PAL-B/G/H (625 lines, 50 Hz field rate, 15.625 kHz line rate), but with 6 MHz video bandwidth rather than 5.5 MHz. This requires the audio subcarrier to be moved to 6.5 MHz. An 8 MHz channel spacing is used for PAL-L.

System A

The BBC tested their pre-war 405 line monochrome system with all three colour standards including PAL, before the decision was made to abandon 405 and transmit colour on 625/System I only.

PAL interoperability

The PAL colour system is usually used with a video format that has 625 lines per frame (576 visible lines, the rest being used for other information such as sync data and captioning) and a refresh rate of 50 interlaced fields per second (compatible with 25 full frames per second), such systems being B, G, H, I, and N (see broadcast television systems for the technical details of each format).

This ensures video interoperability. However as some of these standards (B/G/H, I and D/K) use different sound carriers (5.5 MHz, 6.0 MHz 6.5 MHz respectively), it may result in a video image without audio when viewing a signal broadcast over the air or cable. Some countries in Eastern Europe which formerly used SECAM with systems D and K have switched to PAL while leaving other aspects of their video system the same, resulting in the different sound carrier. Instead, other European countries have changed completely from SECAM-D/K to PAL-B/G.

The PAL-N system has a different sound carrier, and also a different colour subcarrier, and decoding on incompatible PAL systems results in a black and white image without sound. The PAL-M system has a different sound carrier and a different colour subcarrier, and does not use 625 lines or 50 frames/second. This would result in no video or audio at all when viewing a European signal.

Multisystem PAL support and "PAL 60"

Recently manufactured PAL television receivers can typically decode all of these systems except, in some cases, PAL-M and PAL-N. Many of receivers can also receive Eastern European and Middle Eastern SECAM, though rarely French-broadcast SECAM (because France uses the unique positive video modulation) unless they are manufactured for the French market. They will correctly display plain CVBS or S-video SECAM signals. Many can also accept baseband NTSC-M, such as from a VCR or game console, and RF modulated NTSC with a PAL standard audio subcarrier (i.e. from a modulator), though not usually broadcast NTSC (as its 4.5 MHz audio subcarrier is not supported). Many sets also support NTSC with a 4.43 MHz subcarrier.

Many 1990s-onwards VCR players sold in Europe can play back NTSC tapes/discs. When operating in this mode most of them do not output a true (625/25) PAL signal, but rather a hybrid consisting of the original NTSC line standard (525/30), but with colour converted to PAL 4.43 MHz-this is known as "PAL 60" (also "quasi-PAL" or "pseudo PAL") with "60" standing for 60 Hz (for 525/30), instead of 50 Hz (for 625/25). Some video game consoles also output a signal in this mode. Most newer television sets can display such a signal correctly, but some will only do so (if at all) in black and white and/or with flickering/foldover at the bottom of the picture, or picture rolling (however, many old TV sets can display the picture properly by means of adjusting the V-Hold and V-Height knobs-assuming they have them). Some TV tuner cards or video capture cards will support this mode (although software/driver modification can be required and the manufacturers' specs may be unclear). A "PAL 60" signal is similar to an NTSC (525/30) signal, but with the usual PAL chrominance subcarrier at 4.43 MHz (instead of 3.58 as with NTSC and South American PAL variants) and with the PAL-specific phase alternation of the red colour difference signal between the lines.

Most European DVD players output a true NTSC-M signal when playing NTSC discs, which many modern European TV sets can resolve. However, the question of colour system interoperability became largely moot in the European context in the 1980s, with the forced introduction on RGB SCART connectors, first on the French market.

Countries and territories using PAL

Over 120 countries and territories currently use or once used the terrestrial PAL system. Many of these are currently converting terrestrial PAL to DVB-T (PAL still often used by cable TV or in conjunction with a digital standard, such as DVB-C).

PAL B, G, D, K, or I



Countries and territories that once used PAL

Main article: DVB-T § Countries and territories using DVB-T

The following countries no longer use PAL for terrestrial broadcasts, although PAL may still be used in less centralized applications such as analog cable TV.

Country Switched to Switchover completed
PAL Andorra DVB-T 2007-09-2525 September 2007
PAL Australia DVB-T 2013-12-1010 December 2013
PAL Austria DVB-T 2011-06-077 June 2011
PAL Belgium DVB-T 2010-03-011 March 2010
PAL Bulgaria DVB-T 2013-09-3030 September 2013
PAL Croatia DVB-T 2010-10-2020 October 2010
PAL Cyprus DVB-T 2011-07-011 July 2011
PAL Czech Republic DVB-T 2012-06-3030 June 2012
PAL Denmark DVB-T 2009-11-011 November 2009
PAL England DVB-T 2012-10-2424 October 2012
PAL Estonia DVB-T 2010-07-011 July 2010
PAL Faroe Islands DVB-T 2002-12 December 2002
PAL Finland DVB-T 2007-09-011 September 2007
PAL Germany DVB-T 2009-06-044 June 2009
PAL Gibraltar DVB-T 2012-12-3131 December 2012
PAL Guernsey DVB-T 2010-11-1717 November 2010
PAL Hungary DVB-T 2013-10-3131 October 2013
PAL Ireland DVB-T 2012-10-2424 October 2012
PAL Isle of Man DVB-T 2012-10-2424 October 2012
PAL Israel DVB-T 2011-06-1313 June 2011
PAL Italy DVB-T 2012-07-044 July 2012
PAL Jersey DVB-T 2010-11-1717 November 2010
PAL Latvia DVB-T 2010-06-011 June 2010
PAL Lithuania DVB-T 2012-10-2929 October 2012
PAL Luxembourg DVB-T 2006-09-011 September 2006
PAL Macedonia DVB-T 2013-05-3131 May 2013
PAL Malta DVB-T 2011-10-3131 October 2011
PAL Monaco DVB-T 2011-05-2424 May 2011
PAL Netherlands DVB-T 2006-12-1414 December 2006
PAL New Zealand DVB-T 2013-12-011 December 2013
PAL Northern Ireland DVB-T 2012-10-2424 October 2012
PAL Norway DVB-T 2009-12-011 December 2009
PAL Poland DVB-T 2013-07-2323 July 2013
PAL Portugal DVB-T 2012-04-2626 April 2012
PAL San Marino DVB-T 2010-12-022 December 2010
PAL Scotland DVB-T 2012-10-2424 October 2012
PAL Slovenia DVB-T 2010-12-011 December 2010
PAL Slovakia DVB-T 2012-12-3131 December 2012
PAL Spain DVB-T 2010-04-033 April 2010
PAL Sweden DVB-T 2007-10-2929 October 2007
PAL  Switzerland DVB-T 2007-11-2626 November 2007

See also


  1. The standard that defines the PAL system was published by the International Telecommunication Union in 1998 and has the title Recommendation ITU-R BT.470-6, Conventional Television Systems
  2. "PGC categories - Countries using PAL standard".  090426
  3. "Horizontal Blanking Interval of 405-, 525-, 625- and 819-Line Standards".  090426
  4. "NTSC, PAL, and SECAM Overview".  090426 page 52
  5. "empty".  090426
  6. "empty".  090426
  7. Report 308-2 of the XIIth Pleniary Assembly of the CCIR - Characteristics of Monochrome Television Systems
  8. "Changes to the terrestrial television systems in Central and East European countries". EBU. 
  9. Michael Hegarty; Anne Phelan; Lisa Kilbride (1 January 1998). Classrooms for Distance Teaching and Learning: A Blueprint. Leuven University Press. pp. 260–. ISBN  - get this book. 
  11. Channel NewsAsia. Channel NewsAsia. Retrieved on 2014-05-11.

External links

Source of information: Wikipedia, the free encyclopedia - Disclaimer.

Popular search requests

PAL is an object of interest for many people. For example, the people often search for PAL website, PAL blog, PAL online, PAL information, PAL photo, PAL picture, PAL video, PAL movie, PAL history, PAL news, PAL facts, PAL description, PAL detailed info, PAL features, PAL manual, PAL instructions, PAL comparison, PAL book, PAL story, PAL article, PAL review, PAL feedbacks, PAL selection, PAL data, PAL address, PAL phone number, download PAL, PAL reference, PAL wikipedia, PAL facebook, PAL twitter, PAL 2013, PAL 2014, PAL 2015, PAL in spring, PAL in summer, PAL in autumn, PAL in winter, PAL in January, PAL in February, PAL in March, PAL in April, PAL in May, PAL in June, PAL in July, PAL in August, PAL in September, PAL in October, PAL in November, PAL in December, PAL on Monday, PAL on Thuesday, PAL on Wednesday, PAL on Thursday, PAL on Friday, PAL on Saturday, PAL Sunday, PAL holidays, PAL on New Year's Eve, PAL on New Year's Day, PAL on Christmas, PAL on Easter, PAL on Memorial Day, PAL on Labor Day, PAL on Independence Day, PAL on Veterans Day, PAL on Thanksgiving Day, PAL on St. Valentine's Day, PAL on Halloween, PAL on Good Friday, PAL on Black Friday, PAL on Groundhog Day, PAL on Mardi Gras, PAL on Mother's Day, PAL on Father's, PAL on St. Patrick's Day, PAL on April Fools' Day, PAL on Hanukkah, PAL on weekend, PAL working time, PAL today, PAL at morning, PAL at evening, PAL at night, PAL tonight, PAL in the past, PAL in the future, PAL in the United States, PAL USA, PAL US, PAL in United Kingdom, PAL UK, PAL in Canada, PAL in Australia, etc.

PAL is also an object of commercial interest. For example, many people are interested in PAL offers, PAL buy, PAL sell, PAL sale, PAL discounts, discounted PAL, PAL coupon, PAL promo code, PAL order, to order PAL online, to buy PAL, how much for PAL, PAL price, PAL cost, PAL price list, PAL tariffs, PAL rates, PAL prices, PAL delivery, PAL store, PAL online store, PAL online shop, inexpensive PAL, cheap PAL, PAL for free, free PAL, used PAL, and so on.

Besides, a date and time do matter, for example: PAL 2013, PAL 2014, PAL 2015, PAL in spring, PAL in summer, PAL in autumn, PAL in winter, PAL in January, PAL in February, PAL in March, PAL in April, PAL in May, PAL in June, PAL in July, PAL in August, PAL in September, PAL in October, PAL in November, PAL in December, PAL on Monday, PAL on Thuesday, PAL on Wednesday, PAL on Thursday, PAL on Friday, PAL on Saturday, PAL Sunday, PAL holidays, PAL on New Year's Eve, PAL on New Year's Day, PAL on Christmas, PAL on Easter, PAL on Memorial Day, PAL on Labor Day, PAL on Independence Day, PAL on Veterans Day, PAL on Thanksgiving Day, PAL on St. Valentine's Day, PAL on Halloween, PAL on Good Friday, PAL on Black Friday, PAL on Groundhog Day, PAL on Mardi Gras, PAL on Mother's Day, PAL on Father's, PAL on St. Patrick's Day, PAL on April Fools' Day, PAL on Hanukkah, PAL on weekend, PAL working time, PAL today, PAL at morning, PAL at evening, PAL at night, PAL tonight, PAL in the past, PAL in the future, etc.

PAL worldwide

PAL is an object of interest of the people from all countries of the world: PAL Afghanistan, PAL Albania, PAL Algeria, PAL Andorra, PAL Angola, PAL Antigua & Deps, PAL Argentina, PAL Armenia, PAL Australia, PAL Austria, PAL Azerbaijan, PAL Bahamas, PAL Bahrain, PAL Bangladesh, PAL Barbados, PAL Belarus, PAL Belgium, PAL Belize, PAL Benin, PAL Bhutan, PAL Bolivia, PAL Bosnia Herzegovina, PAL Botswana, PAL Brazil, PAL Brunei, PAL Bulgaria, PAL Burkina, PAL Burundi, PAL Cambodia, PAL Cameroon, PAL Canada, PAL Cape Verde, PAL Central African Rep, PAL Chad, PAL Chile, PAL China, PAL Colombia, PAL Comoros, PAL Congo, PAL Congo {Democratic Rep}, PAL Costa Rica, PAL Croatia, PAL Cuba, PAL Cyprus, PAL Czech Republic, PAL Denmark, PAL Djibouti, PAL Dominica, PAL Dominican Republic, PAL East Timor, PAL Ecuador, PAL Egypt, PAL El Salvador, PAL Equatorial Guinea, PAL Eritrea, PAL Estonia, PAL Ethiopia, PAL Fiji, PAL Finland, PAL France, PAL Gabon, PAL Gambia, PAL Georgia, PAL Germany, PAL Ghana, PAL Greece, PAL Grenada, PAL Guatemala, PAL Guinea, PAL Guinea-Bissau, PAL Guyana, PAL Haiti, PAL Honduras, PAL Hungary, PAL Iceland, PAL India, PAL Indonesia, PAL Iran, PAL Iraq, PAL Ireland {Republic}, PAL Israel, PAL Italy, PAL Ivory Coast, PAL Jamaica, PAL Japan, PAL Jordan, PAL Kazakhstan, PAL Kenya, PAL Kiribati, PAL Korea North, PAL Korea South, PAL Kosovo, PAL Kuwait, PAL Kyrgyzstan, PAL Laos, PAL Latvia, PAL Lebanon, PAL Lesotho, PAL Liberia, PAL Libya, PAL Liechtenstein, PAL Lithuania, PAL Luxembourg, PAL Macedonia, PAL Madagascar, PAL Malawi, PAL Malaysia, PAL Maldives, PAL Mali, PAL Malta, PAL Marshall Islands, PAL Mauritania, PAL Mauritius, PAL Mexico, PAL Micronesia, PAL Moldova, PAL Monaco, PAL Mongolia, PAL Montenegro, PAL Morocco, PAL Mozambique, PAL Myanmar, {Burma}, PAL Namibia, PAL Nauru, PAL Nepal, PAL Netherlands, PAL New Zealand, PAL Nicaragua, PAL Niger, PAL Nigeria, PAL Norway, PAL Oman, PAL Pakistan, PAL Palau, PAL Panama, PAL Papua New Guinea, PAL Paraguay, PAL Peru, PAL Philippines, PAL Poland, PAL Portugal, PAL Qatar, PAL Romania, PAL Russian Federation, PAL Rwanda, PAL St Kitts & Nevis, PAL St Lucia, PAL Saint Vincent & the Grenadines, PAL Samoa, PAL San Marino, PAL Sao Tome & Principe, PAL Saudi Arabia, PAL Senegal, PAL Serbia, PAL Seychelles, PAL Sierra Leone, PAL Singapore, PAL Slovakia, PAL Slovenia, PAL Solomon Islands, PAL Somalia, PAL South Africa, PAL Spain, PAL Sri Lanka, PAL Sudan, PAL Suriname, PAL Swaziland, PAL Sweden, PAL Switzerland, PAL Syria, PAL Taiwan, PAL Tajikistan, PAL Tanzania, PAL Thailand, PAL Togo, PAL Tonga, PAL Trinidad & Tobago, PAL Tunisia, PAL Turkey, PAL Turkmenistan, PAL Tuvalu, PAL Uganda, PAL Ukraine, PAL United Arab Emirates, PAL United Kingdom, PAL United States, PAL Uruguay, PAL Uzbekistan, PAL Vanuatu, PAL Vatican City, PAL Venezuela, PAL Vietnam, PAL Yemen, PAL Zambia, PAL Zimbabwe, etc.

PAL in the United States

PAL is also an object of search of many Americans, from all cities and states of the USA. The following phrases are usually used: PAL New York City, PAL NY, PAL Los Angeles, PAL LA, PAL Chicago, PAL Houston, PAL Phoenix, PAL Philadelphia, PAL San Antonio, PAL San Diego, PAL Dallas, PAL San Jose, PAL Detroit, PAL Jacksonville, PAL Indianapolis, PAL San Francisco, PAL Columbus, PAL Austin, PAL Memphis, PAL Fort Worth, PAL Baltimore, PAL Charlotte, PAL El Paso, PAL Milwaukee, PAL Boston, PAL Seattle, PAL Denver, PAL Washington, PAL Alabama, PAL Alaska, PAL Arizona, PAL Arkansas, PAL California, PAL Colorado, PAL Connecticut, PAL Delaware, PAL Florida, PAL Georgia, PAL Hawaii, PAL Idaho, PAL Illinois, PAL Indiana, PAL Iowa, PAL Kansas, PAL Kentucky, PAL Louisiana, PAL Maine, PAL Maryland, PAL Massachusetts, PAL Michigan, PAL Minnesota, PAL Mississippi, PAL Missouri, PAL Montana, PAL Nebraska, PAL Nevada, PAL New Hampshire, PAL New Jersey, PAL New Mexico, PAL New York, PAL North Carolina, PAL North Dakota, PAL Ohio, PAL Oklahoma, PAL Oregon, PAL Pennsylvania, PAL Rhode Island, PAL South Carolina, PAL South Dakota, PAL Tennessee, PAL Texas, PAL Utah, PAL Vermont, PAL Virginia, PAL Washington, PAL West Virginia, PAL Wisconsin, PAL Wyoming, etc.

Do you want to know more? Look at the full version of the PAL article.

Super Offers
Super Sale
18-Year Design Experience
24/7 Service, No Weekends
Lowest Fixed Prices
Exceptional Quality Guarantee
150+ Designs in the Portfolio
Pro Website Design Services
Pro Graphic Design Services
Pro Photo Editing Services
Fast & Easy Online Ordering
Various Payment Methods
Fast & Professional Support
Contact Us
Twitter News: follow
RSS: subscribe
ICQ Chat: 11170351
Skype Chat: qesigncom
Yahoo! Chat: qesigncom
AIM Chat: qesign1
GG Chat: qesign
Voicemail & Fax: 1.206.6666090
Special Offers
Related Offers
Premium website templates, deluxe graphic layoutsPremium Designs
Exclusively designed, deluxe web templates and layouts
Flash photo albums, Flash picture gallery templatesFlash Online Photo Albums
Dynamic Flash photo gallery templates, online photo albums
AllStockMusic stock music collection saleAllStockMusic
The best stock music collections for your projects
Photo store, picture shop, image saleRoyalty-Free Photos
Best pictures for a web design, graphic design, and printing
Webmaster software, web design software, graphic design softwareSoftware Sale
Best website design software and graphic design software
Low-cost, professional website hosting & domain registrationWeb Hosting Sale
hosting sale. Order now & save!

© 1996-2014 MAGIA Internet Studio
AboutPortfolioPhoto on DemandHostingAdvertiseSitemapPrivacyMaria Online